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Turbulence

◮ Chaotic flow in a large range of scales;

◮ Natural phenomena for turbulent MHD flow;
◮ Stellar formation;
◮ Dynamo effect;
◮ Solar weather;
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Motivating question

◮ Problems:
◮ Flow equations usually form a system of nonlinear differential

equations with very rich behaviour, acting over an immense
number of scales;

◮ Are there solutions for every set of initial/boundary conditions?
Are these solutions well defined for all time, i.e., is there
singularity formation in finite time (blowup)?

◮ The existence of blowup is and open problem even in
simple flow, such as 2D convective flow and 3D ideal flow.
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The incompressible MHD equations

∂v

∂t
− ν∇2v = −(v · ∇)v+ (b · ∇)b−∇p,

∂b

∂t
− η∇2b = ∇× (v× b),

∇ · v = 0 , ∇ · b = 0,

(1)

v and b are the velocity and induced magnetic fields;
p is the (magnetic and kinetic) pressure;
The density ρ has been taken as one.
These equations follow from the Navier-Stokes equation taking
into account the Lorentz force and from Maxwell equations.
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◮ The nonlinear terms on the right-hand side redistribute
magnetic and kinetic energy among the full range of scales of
the system.

◮ Three-dimensional systems have three ideal quadratic
invariants, the total energy (E ), the total correlation (C ) and
total magnetic helicity (H) given as follows:

E =
1

2

∫

(v2 + b2)d3x ,

C =

∫

v · bd3x ,

H =

∫

a · (∇× a)d3x ,

(2)

where a = ∇× b.
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Shell Models
◮ Discretization of the Fourier space onto concentric spherical

shell, kn−1 ≤ ‖k‖ < kn, kn = k0h
n;

◮ Scalar variables are assigned to each shell; these variables
account for fluid velocity and magnetic field;

dvn

dt
= kn[ǫ(v

2
n−1 − b2n−1) + vn−1vn − bn−1bn]

− kn+1[v
2
n+1 − b2n+1 + ǫ(vnvn+1 − bnbn+1)],

dbn

dt
= ǫkn+1[vn+1bn − vnbn+1] + kn[vnbn−1 − vn−1bn].

(3)

ǫ is a model free parameter [Gloaguen, et.at.;1985].
◮ Conservation of Energy and Cross-correlation

E = 1
2

∑

(u2n + b2n) , C =
∑

unbn.
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Blowup
◮ Example 1:

dy

dt
= y2. (4)

Solutions of this equation have the form

y(t) = (tc − t)−1 → ∞ as t → tc . (5)

◮ Example 2: inviscid Burgers equation

ut + uux = 0 (6)
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Blowup criterion for MHD model
◮ We define the norms [Constantin,et al.; 2007]

∥

∥v ′
∥

∥ =
(

∑

k2nv
2
n

)1/2
,

∥

∥v ′
∥

∥

∞
= sup

n
kn |vn| .

(7)

◮ Blowup:
∥

∥v ′
∥

∥+
∥

∥b′
∥

∥→ ∞ . (8)

Theorem
Let vn(t) and bn(t) be a smooth solution of (3) regular for
0 ≤ t < tc , where tc is the maximal time of existence for such

solution. Then, either tc = ∞ or

∫ tc

0

∥

∥v ′
∥

∥

∞
dt = ∞. (9)
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Renormalization Scheme

Definition
Let τ be the renormalized time, implicitly defined [Dombre, Gilson;
1998] by

t =

∫ τ

0

exp

(

−

∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′, (10)

The renormalized velocity and magnetic variables are defined as

un = exp

(

−

∫ τ

0

R(τ ′)dτ ′
)

knvn,

βn = exp

(

−

∫ τ

0

R(τ ′)dτ ′
)

knbn.

(11)
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Renormalized shell model
dun

dτ
= −R(τ)un + Pn ,

dβn
dτ

= −R(τ)βn + Qn (12)

Pn = ǫ(h2(u2n−1 − β2
n−1)− unun+1 + βnβn+1)

+ h(un−1un − βn−1βn)− h−1(u2n+1 − β2
n+1),

Qn = ǫ(un+1βn − unβn+1) + h(unβn−1 − un−1βn).

(13)

◮ R(τ) is found by imposing
∑

u2n + β2
n = c :

R(τ) =

∑

unPn + βnQn
∑

u2n + β2
n

(14)

Lemma: For any nontrivial initial conditions of finite ℓ2-norm, a
regular solution un and βn of the renormalized system (12) exists
and is unique for 0 ≤ τ < ∞. t(τ) < tc , and blowup time is
tc = lim

τ→∞

t(τ).
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Types of solutions

◮ Solutions of the renormalized model develop as different types
of waves travelling towards larger shells

◮ Travelling wave solutions
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◮ Periodically pulsating wave solutions
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◮ Chaotically pulsating wave solutions
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Poincaré map

◮ We estimate the center nw of a solution
w = (..., un, un+1, ..., βn, βn+1, ...) as

nw (τ) =
∑

n(u2n + β2
n)/
∑

(u2n + β2
n) (15)

◮ We take the sequence τi as the times necessary for a solution
center to travel by i shells

nw (τi ) = nw (0) + i (16)

◮ We define a Poincaré map P as [Mailybaev; 2013]

w ′ = Pw , u′n = un+1(τ1), β′

n = βn+1(τ1). (17)
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Bifurcation Diagram
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Multistability
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Asymptotic travelling wave solution
◮ Let us first consider the case bn = 0. For τ sufficiently big,

un(τ) = aU(n − aτ) (18)

◮ We define

y =
1

log h

∫ 1/a

0

R(τ)dτ, V (t − tc) = exp

(
∫ τ

0

R(τ)dτ

)

U(−τ)

(19)
where τ is related to t by (10) and R is given by (14).

◮ Theorem: If y > 0, then solution vn(t) related to (18), for arbitrary
posivite constant a, is given by

vn(t) = aky−1
n V (aky

n (t − tc)) (20)

where the blowup time tc < ∞ is given by

tc =

∫

∞

0

exp

(

−

∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′ (21)
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Asymptotic Blowup Solution of Period (1,2)
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Conclusions

◮ We prove an analytic criterion for blowup;

◮ Our method constructs asymptotic blowup solutions;
◮ These solutions are universal: depend only on the attractor,

selected by the value of an invariant;
◮ We show that there is blowup in the case of existence of these

attractors;

◮ Asymptotic solutions give scaling laws near blowup, useful for
other applications;

◮ Observation of competing blowup scenarios.

◮ Implications for MHD flow:
◮ role of magnetic field in blowup;
◮ dynamo effect in blowup.
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