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cada como requisito parcial para a obtenção do t́ıtulo de Mestre emMatemática:
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Resumo

Este trabalho considera o problema de formação de singularidades em tempo
finito (blowup) em um modelo shell de turbulência magnetohidrodinâmica
sob a perspectiva de sistemas dinâmicos. Começamos ao provar um critério
de blowup similar ao teorema de Beale-Kato-Majda. O restante de nossa
análise é baseada em um esquema de renormalização que leva o tempo de
blowup para infinito. Esta transformação associa o blowup a um atrator do
sistema renormalizado, constrúıdo a partir de seu mapa de Poincaré. Desta
forma, nós não apenas descrevemos a estrutura do blowup, como também ex-
plicamos sua universalidade. Seguindo este método, mostramos que o blowup
possui estrutura caótica para alguns parâmetros. Além disso, nós observa-
mos, para um modelo espećıfico, o interessante efeito de coexistência entre
diferentes cenários de blowup, os quais são então selecionados com base nas
condições iniciais.

Abstract

This work considers the problem of finite time singularities (blowup) in a shell
model of magnetohydrodynamic (MHD) turbulence from a dynamical sys-
tem standpoint. First, we prove a blowup criterion similar to the Beale-Kato-
Majda theorem. Further analysis is based on a renormalization scheme which
takes blowup time to infinity. This transformation associates the blowup to
an attractor of the renormalized system, found from its Poincaré map. This
way, we not only describe the blowup structure but also explain its universal-
ity. Following this approach, we show that, for some parameter values, the
blowup has a chaotic structure. Moreover, we observe an interesting effect
of coexisting blowup scenarios in a specific model, which are selected based
on initial conditions.
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Chapter 1

Introduction

1.1 Thesis overview

This thesis is organized in five main chapters, aside from the Introduction
and Conclusion.

In the Introduction, Chapter 1, we give a brief description of important
problems in fluid dynamics theory that motivate this work. Then we describe
the models involved and present the blowup phenomenon through some clas-
sical examples.

Chapter 2 is focused on the magnetohydrodynamic shell model over which
this thesis was developed. We properly define blowup in this model and prove
a criterion for its occurrence, similar to the Beale-Kato-Majda theorem. In
Chapter 3 we define a renormalization scheme, which takes blowup time to
infinity in the renormalied counterpart of the model studied.

In Chapter 4, we pay attention to a pure hydrodynamic shell model, ob-
tained from identically null initial condition for the magnetic shell variables.
We study how some previous works built asymptotic solutions of this model
near blowup from travelling wave limiting solutions of its associated renor-
malized model. In Chapter 5, we return to a detailed study of the limiting
solutions of our renormalized MHD model in terms of the attractors of its
Poincaré map. These results are then used in Chapter 6 to generalize the
results of Chapter 4 to the blowup description for the original MHD shell
model.

At the end, we provide a list of publications and conference presentations
on the topic of this dissertation.
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1.2 Motivation and Underlying Ideas

Turbulence has always been amongst the most intimidating and captivating
phenomenons in nature. While its ubiquitous character makes a complete
theory of turbulent flow an intellectual treasure trove for mathematicians,
physicists and engineers, its mercurial behaviour has thwarted any such en-
deavour.

Magnetohydrodynamics has undergone great development during the last
decades, prompted by astrophysical observations and experimental needs. At
the same time, due to the astronomical scale or great energy density of such
fluid bodies, turbulent flow is exceedingly common. This in turn makes mag-
netohydrodynamics (MHD) a very welcoming field for the study of turbulent
phenomena, providing a great collection of new observations and mechanisms
to further develop our intuition and ideas.

Our interest lies in the universal mechanisms of turbulence. In summary:
regardless of the specific dynamics under which a fluid flows, there is some
outer scale in which energy is introduced in the system (in the form of fluid
kinetic energy) and the Kolmogorov or dissipative scale under which energy
is dissipated to the medium by viscosity (or a similar effect, such as magnetic
diffusivity).

The more dominant the nonlinearity of the flow is in comparison to the
viscous term, the bigger is the separation of the outer and the Kolmogorov
scales, forming what is called the inertial range over which turbulence devel-
ops. The complex behaviour of turbulent flow over this great range of scales
can be said to be the core difficulty in its study; as an example, the dissipa-
tive scale of atmospheric flow is submillimetric while the outer scale spans
thousands of kilometres. Completely solving the flow, in principle, demands
the solution of all of the intermediate scales in the inertial range, a feat that
is certainly beyond any present or foreseeable computer.

From such a brief outline, one can already point the two important ques-
tions that motivate this work:

• How is energy transferred between the scales in the inertial range?

• Is blowup (a singularity forming in finite time) possible? If so, how to
describe its structure?

Our outlook is that these issues are connected. The same way as the forma-
tion of singularities in the derivatives of ocean surface waves leads to larger
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dissipation [1], one expects that blowup can play an important role in the
cascading of energy in the inertial range of fully developed turbulence.

The investigation of these problems demands further understanding of
turbulent dynamics over a large set of scales, specially across small scales
that are difficult to perceive and develop intuition about. Direct numeri-
cal simulations over such a range of scales is also prohibitive aside from the
simplest cases. As an alternative, we focus on the development of blowup
theory for a class of simplified models of turbulence called shell models. These
are infinite-dimensional dynamical systems obtained after the spectral trun-
cation of the flow equations in a way that preserves some symmetries and
invariants, but allows for accurate numerical simulations.

Shell models have been found to closely emulate many turbulent phe-
nomena, such as energy and enstrophy cascades as well as anomalies in their
scaling exponents [2]. Although shell models can be regarded as toy models
for turbulence, these dynamical systems are far from trivial and in the scope
of this work are taken as central objects of study in their own right.

The stance of studying turbulence mechanisms from their modelling in
dynamical systems naturally provides a great collection of well established
techniques, such as Poincaré sections, attractors, bifurcation theory and sta-
bility theory. However, these methods are, in principle, defined for finite-
dimensional systems and require that solutions exist for arbitrary time. The
central achievements of this work lie in the treatment of these hurdles as we
investigate solution blowup.

1.3 Modelling

1.3.1 Hydrodynamic Incompressible Flow

A flow can be identified by the specification of it velocity field v ∈ R
3,

mass density ρ, pressure p and temperature T . Fluid dynamics has achieved
great success by modeling fluids based of conservation and thermodynamic
principles, namely the conservation of mass, momentum and energy and the
equation of state. From these principles, one can describe the evolution of
all the variables necessary to specify the state of a fluid.

In most concrete settings, it is appropriate to regard some of these vari-
ables as constants and simplify the system. For instance, a formulation in

3



which water or air can be regarded as incompressible is very common. In the
simplest setting of fully developed turbulence, the temperature variations are
decoupled from momentum and continuity equations. In this case, we are
left with the Navier-Stokes equations for incompressible flow [3]

∂v

∂t
+ v · ∇v = −∇p+ ν∆v + f,

∇ · v = 0,
(1.1)

where the density ρ has been normalized to one, ν stands for the kinematic
viscosity and f accounts for external forcing per unit of mass. The second
equation is the incompressibility condition.

1.3.2 Magnetohydrodynamic Flow

The objects of study of Magnetohydrodynamics (MHD) are fluids susceptible
to electromagnetic forces. As the fluid moves, electric charges are carried,
which in turn induces change of the magnetic field. However, these fluids
typically have a large number of free electrons, which can rapidly rearrange
themselves in a steady state again. This simplifies the mathematical descrip-
tion of such a fluid, as we need only to add the induced magnetic field to the
usual fluid variables to describe an MHD flow.

The unforced MHD equations for incompressible systems read [4]:

∂v

∂t
− ν∇2v = −(v · ∇)v + (b · ∇)b−∇p,

∂b

∂t
− η∇2b = ∇× (v× b),

∇ · v = 0 , ∇ · b = 0,

(1.2)

where v and b are the velocity and induced magnetic fields, p is the to-
tal pressure, both magnetic and kinetic, while the density ρ has been taken
as one. The induced magnetic field b was normalized by

√
4πρ, measured

in units of velocity. These equations follow from the Navier-Stokes equa-
tion taking into account the Lorentz force and from Maxwell equations [4].
The first equation is a momentum equation considering eletromagnetic forces
and stress. The second equation models magnetic field dynamics, assuming
uniform conductivity. It follows from Faraday’s law and Ohm’s law, which
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describe eletromagetic induction and the electric current created by and elec-
tric field, respectively.

The nonlinear terms on the right-hand side redistribute magnetic and
kinetic energy among the full range of scales of the system. When the trans-
ference of kinetic to magnetic energy exactly compensates energy dissipation
caused by magnetic diffusivity, magnetic energy does not decay with time.
This phenomenon is called dynamo action.

Three-dimensional systems have three ideal quadratic invariants, the to-
tal energy (E), the total correlation (C) and total magnetic helicity (H)
given as follows:

E =
1

2

∫

(v2 + b2)d3x,

C =

∫

v · bd3x,

H =

∫

a · (∇× a)d3x,

(1.3)

where a = ∇× b.

1.3.3 Shell Models

As we look at the balance laws working inside a fluid, first we need to de-
termine what the distinctive characteristics are that describe the interact-
ing parts of the fluid. The most familiar concept is the notion of spatial
scale, having the outer and inner scales been naturally defined by the flow
problem. However, how do we define the intermediate scales? We follow
the usual correspondence between physical and Fourier spaces and interpret
the distinction between scales as some form of filtering between subsets of
wavenumbers.

Shell models arise upon analysis of one such filter, a discretization of the
Fourier space onto concentric spherical shell, kn−1 ≤ ‖k‖ < kn. The sequence
{kn}n∈N is chosen as a geometric progression kn = k0h

n, so as to significantly
reduce the degrees of freedom of the model, in comparison to the full fluid
equations. To each shell is assigned one or more scalar variables, which may
be interpreted as some mean or projection of the spectral fluid variables onto
the shell. These variables may account for fluid velocity, induced magnetic
field, temperature deviation from its mean value, etc.
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The spectral Navier-Stokes equation can be written as

∂vj(k)

∂t
=− i

∑

m,n

∫
(

δj,n −
kjk

′
n

k2

)

vm(k
′)vn(k− k′)d3k′

− νk2vj(k) + fj(k).

(1.4)

Following this structure, a shell model may be defined in the following func-
tional form [2]

dvn
dt

= Cn(v, v)−Dn(v) + Fn, (1.5)

where v = (v1, v2, ...) is a vector of shell variables vn ∈ R. In this model,
Cn(v, v) are the quadratic nonlinear coupling terms, Dn(v) are the linear dis-
sipative terms and Fn are the forcing terms.

A specific shell model is then constructed from (1.5) by defining the range
of interaction between shells and imposing some symmetries or ideal invari-
ants of the original flow to be preserved in the shell model. For exam-
ple, assuming that shells interact only among neighbours and that energy
E =

∑

v2n/2 is conserved, one may write the mixed Obukhov-Novikov hy-
drodynamic shell model [2] as

dvn
dt

= Akn
(

v2n−1 − hvnvn+1

)

+Bkn
(

vn−1vn − hv2n+1

)

− νk2

nvn + fn, (1.6)

where A and B are arbitrary constants. This model is constructed over the
Hilbert space ℓ2 of the sequences v = (v1, v2, ...).

We note that the above construction of a shell model is quite simplistic
and serves introductory purposes. There are different paths that one may
tread to build shell models, such as projection of spectral flow equations onto
wavelets. But we note that these different paths usually lead to the same or
equivalent models if the same choices of invariances and interaction ranges
have been made; this shows that the shell model construction is quite robust.
For a more detailed account on shell model history and construction, we refer
to [2] and [6].

1.4 Blowup

By blowup we mean the formation of singularities in finite time for some
initially regular solution of an evolution model. How exactly a solution may
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turn singular depends on the problem in question, but it is generally regarded
as caused by the divergence of the solution or some of its derivatives as it
approaches a specific blowup time tc. After this critical point, the solution
may not be well defined or may not be regarded as a solution in the classical
sense.

As a first example, take an ordinary differential equation for real function
y(t) as

dy

dt
= y2. (1.7)

Solutions of this equation have the form

y(t) = (tc − t)−1 , (1.8)

i.e., they diverge as t → tc.
Another classical example is the inviscid Burgers equation, a hyperbolic

conservation law
∂u

∂t
+ u

∂u

∂x
= 0, (1.9)

for a differentiable function u(x, t). We can consider this equation along
special curves on the plane (t, x), called characteristic curves, defined under
a parametrization by s ∈ R by

dt

ds
= 1,

dx

ds
= u. (1.10)

For each characteristic curve, the partial differential equation (1.9) is reduced
to

du

ds
=

∂u

∂t
+ u

∂u

∂x
= 0, (1.11)

hence, u is constant along a characteristic. In particular, this means that
characteristics are straight lines. The above construction allows to solve the
Cauchy problem for given initial condition u(0, x) = u0(x) by continuation
of the values u0(x) along the characteristics for t > 0.

According to (1.10), each characteristic has a slope 1/u0(x). Thus, if
there are points x1 < x2 such that

u0(x1) > u0(x2), (1.12)
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u 1

u
=

u
2

t∗

Figure 1.1: Crossing of two characteristics carrying two different solution
values u1 = u0(x1) and u2 = u0(x2)

then, there is some time t∗ > 0 at which the characteristics starting at (x1, 0)
and (x2, 0) cross each other, as shown in Figure 1.1. As characteristics carry
different values u0(x1) 6= u0(x2), the value of u at their intersection is am-
biguous. This shows that a differentiable solution cannot exist for all times
t > 0, in other words, it must blowup in finite time. The blowup of the Burg-
ers equation leads to an infinite derivative ∂u/∂x at some point as t → tc and
then to the formation of a discontinuous (shock wave) solution, see Figure
1.2, which must be defined in a weak sense [7].

These simple examples leave a clear message: if we insist that solutions
must be smooth, then we need to accept that there may be solutions which
exist only for a finite time. This phenomenon is directly linked to the nonlin-
earity of the differential equations and is possible regardless of how smooth
the initial data may be. The existence of blowup for 3D incompressible in-
viscid flow, as well as for the MHD flow, is an open problem [8]. Thus, shell
models may provide some insight on possible blowup scenarios and help to
develop methods for their analysis.
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x

u

t = 0 t < tc tc t >> tc

Figure 1.2: Evolution of the wave solution of the Burgers equation. As
time passes, wave front is compressed as characteristic curves approach each
other, resulting in a steeper slope. At the blowup time tc, the derivative goes
to infinity, resulting in a vertical slope at some point. After this blowup,
solution becomes discontinuous.
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Chapter 2

MHD Turbulence Shell Models

and Blowup

2.1 Model

We focus our study on the shell model for MHD turbulence modified by
Gloaguen et al. [9] from the mixed Obukhov-Novikov hydrodynamic shell
model (1.6), see [10, 11]. Equations of this model read

dvn
dt

= Akn[v
2

n−1 − b2n−1 − h(vnvn+1 − bnbn+1)]+

+Bkn[vn−1vn − bn−1bn − h(v2n+1 − b2n+1)]− νk2

nvn,

dbn
dt

= Akn+1[vn+1bn − vnbn+1] +Bkn[vnbn−1 − vn−1bn]− ηk2

nbn,

(2.1)

where kn = k0h
n is a wave number, ν is the kinematic viscosity, η is the

magnetic diffusivity and A and B are arbitrary coupling coefficients. Usually,
one takes h = 2. This system is based on the restriction to real variables,
vn and bn, which mimic the speed and magnetic field fluctuations at shell
kn ≤ |k| < kn+1 for n = 1, 2, .... Only the interaction between nearest shells
is considered in this model. The system must be supplied by the initial
conditions at t = 0 and boundary conditions for shell v0 and b0, which are
usually assumed to be null.

We are concerned with the uniparametric analysis of the inviscid/nondiffusive
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model. Choosing ν = η = 0, B = 1 and A = ǫ, (2.1) is written as

dvn
dt

= kn[ǫ(v
2

n−1 − b2n−1) + vn−1vn − bn−1bn]

− kn+1[v
2

n+1 − b2n+1 + ǫ(vnvn+1 − bnbn+1)],

dbn
dt

= ǫkn+1[vn+1bn − vnbn+1] + kn[vnbn−1 − vn−1bn].

(2.2)

This model was built upon two inviscid invariants, the total energy and the
cross-correlation function,

E =
1

2

∑

(u2

n + b2n) , C =
∑

unbn , (2.3)

where the sum is always assumed over all shells n. These invariants mimic
the energy and cross-correlation of the MHD flow, see (1.3).

2.2 Local existence of solutions and blowup

As we search for blowup in solutions of (2.2), we first need to give it a proper
mathematical definition. We base our construction on something analogous
to the field gradients in the shell space, defined by multiplication over the
wavenumbers kn. We choose the two norms as [12]

‖v′‖ =
(

∑

k2

nv
2

n

)1/2

,

‖v′‖∞ = sup
n

kn |vn| .
(2.4)

In this notation, the prime signals that each shell variable is multiplied by
its corresponding wavenumber, as one would have for a derivative in Fourier
space. Note that the norm ‖v′‖ is then analogous to the enstrophy in fluid
dynamics. Solutions of (2.2) are called regular (or classical) if

‖v′‖+ ‖b′‖ < ∞ . (2.5)

Theorem 1 If the initial conditions at t = 0 satisfy the condition (2.5),
there exists some T > 0 such that (2.2) has an unique regular solution u(t)
in the interval [0, T ).
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This theorem is based on the Picard-Lindlöf theorem for existence and
unicity of initial value problems. The complete proof can be found in [13]
for the Sabra shell model and its modification to other shell models is quite
straightforward, as shell models in general feature the same type of bilinear
coupling. We say that a solutions blows up at t = tc if it is regular at t < tc
and

sup
0≤t<tc

(‖v′‖+ ‖b′‖) = ∞. (2.6)

The following theorem serves as a blowup criterion for model (2.2), analogous
to the Beale-Kato-Majda theorem for the fluid dynamics [14].

Theorem 2 Let vn(t) and bn(t) be a smooth solution of (2.2) satisfying the
condition (2.5) for 0 ≤ t < tc, where tc is the maximal time of existence for
such solution. Then, either tc = ∞ or

∫ tc

0

‖v′‖∞ dt = ∞. (2.7)

Proof: If (2.7) is satisfied for tc < ∞, it follows that ‖v′‖∞ is unbounded for
0 ≤ t < tc. Hence, (2.6) is satisfied, making (2.7) a sufficient condition for
blowup. Let us show that it is also a necessary condition.

Using the definitions (2.4) and equations (2.2) we find the relation

1

2

d

dt

(

‖v′‖2 + ‖b′‖2
)

=
∑

k2

nvn
dvn
dt

+
∑

k2

nbn
dbn
dt

=
∑

k2

nvn{kn[ǫ(v2n−1 − b2n−1) + vn−1vn − bn−1bn]

− kn+1[v
2

n+1 − b2n+1 + ǫ(vnvn+1 − bnbn+1)]}
+
∑

k2

nbn{ǫkn+1[vn+1bn − vnbn+1] + kn[vnbn−1 − vn−1bn]}.
(2.8)

The right-hand side of the above expression can be written as a sum of
series. Inside each series, one can use the bound kn |vn| ≤ ‖v′‖∞ for any shell
number n, as well as the Cauchy-Schwarz inequality where necessary, as in
the example

∣

∣

∣

∑

k3

nvnbn−1bn

∣

∣

∣
≤ ‖v′‖∞h

∑

(kn−1bn−1)(knbn)

≤ ‖v′‖∞h
(

∑

k2

n−1b
2

n−1

)1/2 (∑

k2

nb
2

n

)1/2

≤ h‖v′‖∞‖b′‖2,
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where we used kn = hkn−1. Performing similar estimates for each series, we
find some positive constant D for which

d

dt

(

‖v′‖2 + ‖b′‖2
)

< D ‖v′‖∞
(

‖v′‖2 + ‖b′‖2
)

. (2.9)

From the use of the Grownwall inequality we can find an upper bound
for the sum of the squared norms:

(

‖v′‖2 + ‖b′‖2
)

t=tc
≤
(

‖v′‖2 + ‖b′‖2
)

t=0

exp

(

D

∫ tc

0

‖v′‖∞ dt

)

. (2.10)

This relation proves that (2.7) is necessary for (2.6). �

Theorem 2 states that blowup is necessarily associated with unbounded
values of knvn, which by analogy with fluid dynamics can be interpreted as
a blowup in vorticity.

We note that the existence of solutions in a weak sense can be proven
after blowup, t > tc, as for the Sabra shell model [13]. However, such a proof
does not guaranties its uniqueness. In fact, one can show that an infinite
number of solutions appear after blowup [15].
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Chapter 3

Renormalization and Symmetry

3.1 Renormalization Scheme

Our objective here is to write the shell model equations (2.2) under new
renormalized variables so that the blowup time tc is taken to infinity, en-
abling the use of dynamical system methods. This is accomplished by an
analogous scheme to the one proposed by Dombre and Gilson [16] for the
mixed Obukhov-Novikov model [10, 11] and by Mailybaev for a convective
turbulence shell model [12].

We introduce the renormalized time τ defined implicitly by

t =

∫ τ

0

exp

(

−
∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′, (3.1)

where the function R(τ) is specified later in (3.6). The renormalized shell
speed un and renormalized induced shell magnetic field βn are defined as

un = exp

(

−
∫ τ

0

R(τ ′)dτ ′
)

knvn,

βn = exp

(

−
∫ τ

0

R(τ ′)dτ ′
)

knbn.

(3.2)

The system of equations that describe the temporal evolution of the renor-
malized model can be easily obtained by differentiating (3.2) with respect to
τ , using the definition of t(τ) given by (3.1) and the original system (2.2).
Our renormalized model is thus given by:

dun

dτ
= −Run + Pn,

dβn

dτ
= −Rβn +Qn (3.3)
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where

Pn = ǫ(h2(u2

n−1 − β2

n−1)− unun+1 + βnβn+1)

+ h(un−1un − βn−1βn)− h−1(u2

n+1 − β2

n+1),

Qn = ǫ(un+1βn − unβn+1) + h(unβn−1 − un−1βn).

(3.4)

The function R(τ) is determined by imposing an invariant over the renor-
malized system (3.3). Namely, we want to conserve the sum

∑

(u2
n + β2

n).
Then

1

2

d

dτ

∑

(

u2

n + β2

n

)

=
∑

(unPn + βnQn)−R
∑

(

u2

n + β2

n

)

= 0 (3.5)

is satisfied if

R =

∑

(unPn + βnQn)
∑

(u2
n + β2

n)
. (3.6)

This defines the missing function R in terms of model variables.
Using norm definition (2.4) and expressions (3.2), we have at t = τ = 0,

∑

u2

n =
∑

k2

nv
2

n = ‖v′‖2 ,
∑

β2

n =
∑

k2

nb
2

n = ‖b′‖2 . (3.7)

Hence, the regularity condition implies that
∑

(u2
n + β2

n) < ∞. Thus, we say
that a solution un(τ), βn(τ) is regular if it has finite ℓ2-norm.

Now we verify that our renormalized shell model is well defined globally
in time for any regular initial condition.

Lemma 3 For any nontrivial initial conditions of finite ℓ2-norm, a regular
solution un and βn of the renormalized system (3.3) exists and is unique for
0 ≤ τ < ∞. This solution is related by (3.1) and (3.2) to the regular solution
vn and bn of the original system (2.2) for t < tc, where tc = lim

τ→∞
t(τ).

Proof: Since we have constructed the renormalized system (3.3) from system
(2.2) by defining (3.2), it suffices only to show that (3.6) is well defined and
that any τ ≥ 0 corresponds to t < tc.

As the norm C =
∑

(u2
n + β2

n) < ∞ is conserved, it follows that |un| ≤
C1/2 and |βn| ≤ C1/2. Since the denominator in (3.6) is equal to consntant C,
we need only consider the numerator in the definition of R(τ). Substitution
of Pn and Qn given by (3.4) leads to
∑

(unPn + βnQn) =
∑

un[ǫ(h
2(u2

n−1 − β2

n−1)− unun+1 + βnβn+1)

+ h(un−1un − βn−1βn)− h−1(u2

n+1 − β2

n+1)]

+
∑

βn[ǫ(un+1βn − unβn+1) + h(unβn−1 − un−1βn)].
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Every term in the right-and side can be bounded as, for example, the first
term

∣

∣

∣

∑

unǫh
2u2

n−1

∣

∣

∣
≤ |ǫ|h2C1/2

∑

|u2

n−1|

≤ |ǫ| h2C3/2.
(3.8)

As such, the function R(τ) is bounded for all τ ≥ 0.
From the definitions (3.2) and the condition |un| ≤ C1/2 we have, for t(τ)

given by (3.1),

|knvn(t)| ≤ C1/2 exp

(
∫ τ

0

R(τ ′)dτ ′
)

, (3.9)

i.e. ‖v′‖∞ < ∞ for any τ . By Theorem 2 we have that this solution cannot
blowup for any t(τ) < tc, where tc = lim

τ→∞
t(τ). Then, Theorem 1 implies the

existence and uniqueness of solution vn(t), bn(t) for every such t(τ). Relations
(3.1) and (3.2) map these solutions of (2.2) into unique solutions un(τ) and
βn(τ) of (3.3) which exist globally in τ . �

3.2 Symmetry

In this section, we describe symmetries of the shell model which were found
useful for further study. It is straightforward to see that the renormalized
system (3.3), (3.4) and (3.6) has the following symmetries:

(S.R.1) τ → τ/a, un → aun, βn → aβn for arbitrary real constant a;

(S.R.2) τ → τ − τ0 for arbitrary real constant τ0;

(S.R.3) un → un+1, βn → βn+1.

Note that symmetry (S.R.3) does not hold at the left boundary, as our model
was initially defined only for n ∈ N.

Lemma 4 The definitions (3.1) and (3.2) relate symmetries (S.R.1)-(S.R.3)
of the renormalized system (3.3) to the following symmetries of the original
system (2.2):

(S.N.1) t → t/a, vn → avn, bn → abn for arbitrary real constant a;
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(S.N.2) t → (t− t0) /a, vn → avn, bn → abn, where both a and t0 are constants
uniquely determined by τ0 in (S.R.2) and the corresponding solution
un, βn;

(S.N.3) vn → hvn+1, bn → hbn+1.

Proof : Here we prove only symmetry (S.N.2), which is the most complicated.
The other symmetries are proven with similar arguments. Let τ̂ = τ − τ0,
and consider new solutions (denoted with a hat) that are obtained by the
time shift as ûn(τ̂ ) = un(τ), β̂n(τ̂) = βn(τ). It follows from (3.6) that
R̂(τ̂) = R(τ) = R(τ̂ + τ0). From defenition (3.1):

t̂ =

∫ τ̂

0

exp

(

−
∫ τ ′

0

R̂(τ̂ ′′)dτ ′′

)

dτ ′ =

∫ τ−τ0

0

exp

(

−
∫ τ ′

0

R(τ ′′ + τ0)dτ
′′

)

dτ ′

=

∫ τ

τ0

exp

(

−
∫ ξ′

τ0

R(ξ′′)dξ′′

)

dξ′,

(3.10)

where we have made the substitutions ξ′ = τ ′ + τ0 and ξ′′ = τ ′′ + τ0. Note
that

exp

(

−
∫ ξ′

τ0

R(ξ′′)dξ′′

)

= exp

(

−
∫ ξ′

0

R(ξ′′)dξ′′

)

exp

(
∫ τ0

0

R(ξ′′)dξ′′
)

.

(3.11)
Then, expression (3.10) yields t̂ = (t− t0) /a, where

a = exp

(

−
∫ τ0

0

R(τ ′′)dτ ′′
)

, t0 =

∫ τ0

0

exp

(

−
∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′. (3.12)

Note that constants a and t0 depend not only on τ0 but also on the associated
renormalized system solution un and βn trough (3.6). In a similar manner,
using (3.2) we have

v̂n(t̂) = exp

(
∫ τ̂

0

R̂(τ ′)dτ ′
)

k−1

n ûn(τ̂) = exp

(
∫ τ−τ0

0

R(τ ′ + τ0)dτ
′

)

k−1

n un(τ)

= exp

(
∫ τ

τ0

R(ξ′)dξ′
)

k−1

n un(τ) = avn(t).

(3.13)

Symmetry for bn(t) follows in exactly the same way. �

17



Chapter 4

Asymptotic Blowup Solution of

a Hydrodynamic Model

For vanishing magnetic field variables, bn ≡ 0, system (2.2) reduces to the
mixed Obukhov-Novikov shell model for hydrodynamic turbulence [10, 11]

dvn
dt

= kn[ǫ(v
2

n−1 − hvnvn+1) + vn−1vn − hv2n+1], (4.1)

which is associated by definitions (3.1) and (3.2) to the renormalized system:

dun

dτ
= −R(τ)un + Pn,

R(τ) =

∑

unPn
∑

u2
n

,

Pn = ǫ(h2u2

n−1−unun+1) + hun−1un − h−1u2

n+1.

(4.2)

The blowup problem for model (4.1) was studied in [16]. In this chapter,
we reproduce these results in order to facilitate the blowup study for the
MHD shell model.

4.1 Numerical simulation

For the numerical integration of our models we used the Runge-Kutta-Fehlberg
method, natively implemented in MATLAB. Throughout this work we have
kept the choice of parameters most used in the literature, k0 = 1 and h = 2.
Only the first three shells were provided with nonzero initial conditions. We
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truncated the shell model at the hundredth shell. Such a system is long
enough for the initial perturbation to propagate to an asymptotic solution.

(a) (b)
−1.5 −1 −0.5 0

0

0.1

0.2

0.3

0.4

0.5

v n

t − t
c

n = 0

1
2

Figure 4.1: Blowup for the inviscid O.N. hydrodynamic shell model for ǫ =
0.5: (a) a travelling wave for renormalized variable un(τ); (b) numerical
solution for variable vn(t). The blowup time tc = 1.89 corresponds to τ → ∞.

For ǫ between [−10,−1] and [0.5, 10] numerical simulations yield trav-
elling wave solutions for (4.2) at large enough renormalized time τ . These
asymptotic solutions were first observed in [16]. Such travelling waves have
the form

un(τ) = aU(n − aτ), (4.3)

i.e., the wave travels towards larger n with constant positive speed a. Func-
tion U(ξ) → 0 as ξ → ±∞. Note that a in (4.3) is related to symmetry
(S.R.1)

τ 7→ τ

a
, un 7→ aun (4.4)

Thus, with no loss of generality, we can take a = 1 in further analysis.
Figure 4.1 (a) shows an example of the aforementioned travelling wave

solution. As one can observe, the convergence to a self-similar solution of
the form (4.3) is quite fast: for n ≥ 3 the renormalized shell variables un(τ)
follow the same pattern given by the function U(ξ) in (4.3). In Figure 4.1
(b) we present the numerical solution of system (4.1) for the same values
of parameters and initial values equivalent (by (3.2)) to the ones used in
the previous figure. Successive shell variables vn(t) are similar upon some
rescaling. Such a rescaling should take into account how the shell velocities
are compressed in their amplitude and in time as they approach blowup
time. Comparison of Figures 4.1 (a) and 4.1 (b) shows that, having taken the
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blowup time to infinity by renormalization scheme (3.1) and (3.2), travelling
wave solutions un(τ) of the renormalized system (3.3) induces a self-similar
blowup.

4.2 Asymptotic Blowup Solution

The following result, obtained in [16], provides a rigorous explanation to this
fact; it gives self-similar solutions for the original variables vn(t) based on the
solutions found for the renormalized variables un(τ). We provide the detailed
proof following [12].

Theorem 5 Taking a = 1 in (4.3), let us define the scaling exponent

y =
1

log h

∫

1

0

R(τ)dτ (4.5)

and the function

V (t− tc) = exp

(
∫ τ

0

R(τ)dτ

)

U(−τ), (4.6)

where τ is related to t by (3.1) and R(τ) is given by (4.2).
If y > 0, then the solution vn(t) associated with (4.3) is given by

vn(t) = ky−1

n V (ky
n(t− tc)). (4.7)

This solution blows up at finite time

tc =

∫ ∞

0

exp

(

−
∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′. (4.8)

Proof: First, let us show that integral (4.8) converges. From (4.3) and (4.2),
we conclude that R(τ) must be periodic with period 1/a = 1. As such, from
definition (4.5), a constant D can be found satisfying the inequality

∫ τ

0

R(τ ′)dτ ′ > D + τy log h (4.9)

Using this inequality in the definition of tc in (4.8), one attains the desired
result for every positive y

tc <

∫ ∞

0

exp (−D − τy log h) dτ < ∞.
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Starting from the definition of y in (4.5) and using kn = hn as well as the
periodicity of R(τ), it is easy to verify that, for all positive τ ,

ky
n = exp

(
∫ τ+n

τ

R(τ ′)dτ ′
)

. (4.10)

Let us study time t′ correspondent to τ + n. Using definitions (3.1), (4.8)
and the change of variables τ ′ = τ̂ + n,

tc − t′ =

∫ ∞

τ+n

exp

(

−
∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′ =

∫ ∞

τ

exp

(

−
∫ τ̂+n

0

R(τ ′′)dτ ′′
)

dτ̂

=

∫ ∞

τ

exp

(

−
∫ τ̂

0

R(τ ′′)dτ ′′ −
∫ τ̂+n

τ̂

R(τ ′′)dτ ′′
)

dτ̂ .

(4.11)

Comparing with (4.10), we arrive at

tc − t′ = k−y
n (tc − t). (4.12)

Similarly, using (3.2), (4.10), (4.3) and definition (4.6)

vn(t
′) = k−1

n exp

(
∫ τ+n

0

R(τ ′)dτ ′
)

un(τ + n)

= ky−1

n exp

(
∫ τ

0

R(τ ′)dτ ′
)

U(−τ) = ky−1

n V (t− tc)

(4.13)

Substituting (4.12) into (4.13), we obtain the identity (4.7). Expression
(4.9) also implies that

exp

(
∫ τ

0

R(τ ′)dτ ′
)

→ ∞ as τ → ∞. (4.14)

According to (3.2) and (4.3), this yields an unbounded norm ‖v′‖∞ for t → t−c ,
i.e., the solution indeed blows up at t = tc. �

Note that the function V (ξ) and the scaling exponent y do not depend
on initial conditions. In this regard, the asymptotic solution of the form
(4.7) can be said to be universal. Using symmetry (S.R.1), one can write the
asymptotic formula (4.7) for any wave speed a as

vn(t) = aky−1

n V (aky
n(t− tc)). (4.15)
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Figure 4.2: Numerical (solid blue) and asymptotic self-similar (dashed red)
solutions of (4.1) near blowup.

Using the same parameters and initial conditions as in Figure 4.1, we
compute the asymptotic solution (4.15) near the blowup based on Theorem
5. This solution is presented by dashed lines in Figure 4.2. We observe that
the solution of the shell model (4.1), shown in Figure 4.2 by solid lines, indeed
tends to a self-similar form near blowup, as we proved in Theorem 5. A very
good agreement between the solutions is already achieved at the fourth shell.
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Chapter 5

Attractors

From the previous analysis of the Obukhov-Novikov hydrodynamic shell
model (4.1) for ǫ = 0.5, we saw how the blowup structure of a shell model can
be characterized in terms of a limiting solution of the corresponding renor-
malized model, namely its travelling wave solution. However, this type of
solution does not exist for every value of ǫ. Periodic and chaotically pulsat-
ing waves also appear as limiting solutions of the renormalized system (3.3).
We now develop a broader framework for these limiting solutions in terms of
attractors of a Poincaré map.

5.1 Poincaré Maps

We consider the infinite dimensional Hilbert space W composed by the renor-
malized shell variables

w = (..., un−1, un, un+1, ..., βn−1, βn, βn+1, ...) ∈ W, (5.1)

equipped with the ℓ2 norm ‖w‖2 =
∑

(u2
n + β2

n). From Lemma 3, if ‖w(0)‖ <
∞ we conclude that w(τ) ∈ W for τ ≥ 0. Since blowup is associated with
large shell numbers n, it is convenient to relax the boundary condition at
n = 0, considering a model for n ∈ Z shell numbers, and to thoroughly use
the symmetry (S.R.3) of shell number shift.

We define a real shell number nw for the center of the solution ”wave
packet” to be

nw(τ) =

∑

n (u2
n(τ) + β2

n(τ))
∑

(u2
n(τ) + β2

n(τ))
. (5.2)
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Recall that the denominator of (5.2) is constant, see Section 3.1.
We define a sequence of real times {τi}i∈Z such that

nw(τi) = nw(0) + i, (5.3)

where τ0 = 0 and τi > 0 is the minimum value satisfying the above relation
(assuming that such time exists). The transfer operator between these times
may be defined by

w(τi+1) = T w(τi). (5.4)

The operator T is well defined for a given w as long as the center nw of the
solution travels by 1 with the increase of τ . Numerical computations lead us
to believe that, for any nontrivial w(0) ∈ W , nw → ∞ as τ → ∞. In this
case, the transfer operator T should be well defined for any nontrivial initial
condition.

In addition, we define the operator S, which shifts a state vector w by
one shell number to the left, as

w′ = Sw, u′
n = un+1, β ′

n = βn+1. (5.5)

The action of the operators T and S is illustrated in Figure 5.1.
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Figure 5.1: Plot of shell velocities versus shell numbers of the inviscid O.N.
hydrodynamic shell model for ǫ = 0.5: (a) actions of the transfer operators
T : w(τ0) 7→ w(τ1) and T 2 : w(τ0) 7→ w(τ2); (b) action of the shift operator
S.

We may now define the Poincaré map as P = ST

w′ = Pw(0), u′
n = un+1(τ1), β ′

n = βn+1(τ1). (5.6)
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In such a case, one can see that its iterates are given by

P i = (ST )i = SiT i, (5.7)

having used that T commutes with S because the renormalized system is
translation invariant. Then, the iterate of the Poincaré map is written as

w′ = P iw(0), u′
n = un+i(τi), β ′

n = βn+i(τi). (5.8)
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Figure 5.2: Plot of shell velocities versus shell numbers of the inviscid O.N.
hydrodynamic shell model for ǫ = 0.5: (a) discrete dynamics induced by the
transfer operator T ; (b) Poincaré map iterates P i for i = 0, ..., 5 and its
attractor (bold line).

As one can observe by comparing Figures 5.2, iterating the Poincaré map
P = ST to an initial condition w(0) equates to following the system dynamics
in the moving frame along the logarithmic axis n = logh kn in the Fourier
space. Indeed, the evolution by one shell number with T is compensated
with a shift S by one shell number in the opposite direction. In the previous
sections, we saw how asymptotic blowup solution (4.15) corresponds to a
travelling solution of the renormalized system. This limiting solution is a
fixed point attractor of the Poincaré map, shown by the bold line in Figure
5.2 (b). In this case, we achieve a good agreement between the iterates of
the Poincaré map and its fixed-point in about five iterations.
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5.2 Attractors

Shell models of turbulence present rich dynamics which have yet to be com-
pletely understood. Not only can one observe fixed-point attractor for the
Poincaré map (5.6) of the renormalized system, but also periodic, quasi-
periodic and chaotic attractors. The type of dynamics depends on the choice
of model parameters. A detailed account to the attractor variety in a con-
vective shell model may be found in [12].

Our renormalized MHD shell model (3.3) presents three types of attrac-
tors for the Poincaré map: fixed-point, periodic and chaotic attractors. Each
of these attractors corresponds to travelling, periodically pulsating and chaot-
ically pulsating waves, respectively.

We numerically iterate the Poincaré map (5.8) using a MATLAB native
solver based on the Runge-Kutta-Fehlberg method (ode45 function), coupled
with its event location capability to detect when the solution center travels
integer distances in the logarithmic (shell number) axis (5.3). For initial con-
ditions, we take nonzero values only at two neighbouring shells.

We now present a set of numerical solutions which exemplify different
types of attractors found in our renormalized model. We compare the dis-
crete dynamics of the Poincaré map and its attractors to the different types
of corresponding wave solutions.

We note that the renormalized hydrodynamic model (4.2) is equivalent
to the renormalized MHD model (3.3), when one sets the magnetic field vari-
ables to zero. Thus, Figure 5.2 depicts the MHD shell model dynamics with
vanishing magnetic field.
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Figure 5.3: Numerical solution of inviscid/nondiffusive renormalized MHD
shell model for ǫ = 0.5. (a) and (c) show renormalized shell velocities and
magnetic field after Poincaré map iterations; bold red lines correspond to
their attractors. (b) and (d) show the corresponding travelling wave solutions
for un and βn.

Figure 5.3 shows the same attractor for the MHD model as previously
observed in Figure 5.2, this time developed from a nontrivial initial condi-
tion for the renormalized magnetic field variables βn. From our numerical
solutions, we see that the renormalized magnetic field tends to disappear for
large renormalized times τ . This serves as an example when only the shell
velocity variables are responsible for the development of blowup.
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Figure 5.4: Numerical solution of inviscid/nondiffusive renormalized MHD
shell model for ǫ = −0.35. (a) and (c) show renormalized shell velocities and
magnetic field after Poincaré map iterations; bold red lines correspond to
their attractors. (b) and (d) show the corresponding travelling wave solutions
for un and βn.

Figure 5.4 presents an example of fixed-point attractor which is not a
purely hydrodynamic solution. It represents an equilibrium between the ki-
netic and magnetic components in a travelling wave, unlike the previous case
(Figure 5.3) when only the kinetic component survives. Even a very small
presence of magnetic field in the initial conditions yields a blowup driven
jointly by the velocity and magnetic fields. This magnetic field induction
may be interpreted as analogous to the dynamo effect, a central open problem
in MHD turbulence with great application interest. Namely, the generation
and stability of magnetic fields in celestial bodies and thermonuclear fusion
reactors.
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Figure 5.5: Numerical solution of inviscid/nondiffusive renormalized MHD
shell model for ǫ = −1.3. (a) and (c) show renormalized shell velocities and
magnetic field after Poincaré map iterations; (b) and (d) show the corre-
sponding travelling wave solutions for un and βn. (c) is formed by plots of
a hundred consecutive iterates of the Poincaré map, for i > 500, which are
superimposed due to their convergence.

Figures 5.5 show the attractor of the Poincaré map (5.6) may present
different periods for the un and βn variables. In this case, the velocity com-
ponent develops a fixed-point attractor, while in the magnetic component
a period-2 attractor emerges. In this case, two consecutive shell magnetic
variables are symmetric under its change of sign, as seen in Figures 5.5 (c)
and (d).

We observe chaotically pulsating waves in Figure 5.6 (b) and (d), whose
amplitudes are bounded by some envelopes. This bounding can be perceived
in Figures 5.6 (a) and (c), which present a hundred consecutive iterations of
the Poincaré map, ignoring the first thousand to eliminate transiency.

The type of an attractor may be readily seen using their projections on
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Figure 5.6: Numerical solution of inviscid/nondiffusive renormalized MHD
shell model for ǫ = −0.8. (a) and (c) show renormalized shell velocities and
magnetic field after Poincaré map iterations; (b) and (d) show the corre-
sponding chaotic wave solutions for un and βn.

planes (un,βn), for some fixed n. This method, aside from visually appealing,
is a useful test to distinguish quasi-periodic attractors from chaotic ones, as
the former would present closed contours, while the latter yields a fractal
set. Quasi-periodic attractors were observed in [12] for a shell model of
convective turbulence, but have not been found for the MHD model (3.3).
The projections of a Poincaré section onto a single pair of shell variables
(u70, β70)are shown in Figure 5.7. In both pictures, the first thousand iterates
of the Poincaré map were ignored to eliminate transient effects. Figure 5.7 (a)
shows this section in the case of a period-2 attractor, depicting two periodic
fixed points. Figure 5.7 (b) shows this Poincaré section in the case of a chaotic
attractor, characterized by a cloud of scattered points (u70, β70) bound in a
region of the phase space.
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Figure 5.7: Attractors on the plane (un,βn) for nw = 70, (a) periodic for
ǫ = −1.3; (b) chaotic for ǫ = −0.8.

5.3 Bifurcation Diagrams

In our approach, it is important to identify the type of attractor of (3.3)
for a corresponding parameter value. For this purpose, a bifurcation dia-
gram is very useful. We numerically construct it by computing the iterates
of the Poincaré map the same way as done for the attractors above, but this
time over a large set of values for the parameter ǫ. For visualization, it is
convenient to take the projection of these iterates at a single shell. Natu-
rally, a shell n ≈ nw near the center of the renormalized solution is chosen.
The resulting bifurcation diagram was obtained numerically through parallel
computations in MATALB and may be observed in Figure 5.8.

For ǫ < −1.5 or ǫ > 0.5 (not shown in the figure), we have only observed
fixed-point attractors. In both figures we notice various bifurcations with a
fast transition to chaos. As one would expect, chaotic behaviour is always
simultaneous between the kinetic and magnetic components.

Between the two big chaotic windows, the interval [−0.4,−0.25] presents
an interesting mix of behaviours; not only is it composed of fixed-point and
periodic attractors, it also has a very small chaotic parameter interval. More-
over, this interval is unique is a few senses. It is the only set of parameters for
which nonzero fixed point attractors develop for the magnetic field; it is also
the set over which sign inversion symmetry of the magnetic field is broken.
All these peculiarities prompted a more detailed study of this interval. We
then computed new bifurcation diagrams over this interval, this time using
a continuation algorithm: we take the last iterate from the attractor of the
previous parameter as the initial condition to compute the attractor for a
new neighbouring parameter.
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(a)

(b)

Figure 5.8: Bifurcation Diagrams of P projected on shell variables (a) u70;
(b) β70. Last 200 of 1500 iterates are shown for each value of ǫ.
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Figure 5.9 compares the earlier results (first row) with the results of con-
tinuation with decreasing (second row) and increasing (third row) parameter
values. This reveals the coexistence of different attractors for the same val-
ues of ǫ, i.e., the multistability phenomenon. This is specially clear when one
observes that, over the interval ǫ ∈ (−0.42,−0.40), different fixed-point and
periodic attractors appear for the same parameter values when one performs
a continuation of the solution with increasing and decreasing ǫ. The bifur-
cation diagram previously found by independently computing the attractor
for each parameter value is composed now by these multiple attractors. This
is specially interesting, as it shall lead to the coexistence of different asymp-
totic blowup scenarios in our shell model from the method we develop in the
following chapter.
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(a) (b)

Figure 5.9: Bifurcation Diagrams of the Poincaré map P projected on shell
variables (a) u70; (b) β70. From the top, diagram computed using paral-
lel algorithm; diagram computed using continuation with decreasing val-
ues of ǫ; diagram computed using continuation with increasing values of ǫ.
Multistability (different coexisting attractors) appears in the small window
ǫ ∈ (−0.42, 0.40).
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Chapter 6

Asymptotic Blowup Solution of

an MHD Shell Model

In Chapter 4, following [12] and [16], we constructed asymptotic solutions
near blowup for the hydrodynamic shell model (4.1). These solutions were
built upon the travelling wave solutions found for the renormalized model
(4.2), its symmetries and its correspondence to the original model, given by
the renormalization scheme (3.1) and (3.2). The aim of the present chapter
is to extend these arguments and develop a method for the construction of
asymptotic blowup solutions of the MHD shell model (2.2) from the attrac-
tors of its renormalized equivalent (3.3), which were extensively studied in
Chapter 5.

6.1 Self-similar Blowup Solutions

We begin by extending Theorem 5 to the MHD shell model (2.2). As such,
we consider a fixed-point (period-1) attractor w of the Poincaré Map

Pw = w. (6.1)

From the definition (5.6), this translates to solutions with the property

un+1(τ + 1/a) = un(τ), βn+1(τ + 1/a) = βn(τ), (6.2)

where 1/a = τ1 is the period determined by one iteration of the Poincaré
map. Then, general solutions of (3.3) for large τ tend to the attractor in the
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form of a travelling wave

un(τ) = aU(n− aτ), βn(τ) = aΨ(n− aτ). (6.3)

This wave solution travels towards larger n with constant positive speed a.
Note that a in (6.3) is related to symmetry (S.R.1)

τ 7→ τ

a
, un 7→ aun, βn 7→ aβn. (6.4)

Thus, with no loss of generality, we can take a = 1 in further analysis.
Figure 5.4 depicts one such travelling wave solution. Note that the waves

for both un and βn travel with the same speed, as otherwise the attractor w
would not be a fixed point. Under such assumptions, it is quite straightfor-
ward to extend Theorem 5. As a result, we show that both shell variables
have the same scaling exponents.

Theorem 6 Taking a = 1 in (6.3), let us define the scaling exponent

y =
1

log h

∫

1

0

R(τ)dτ (6.5)

and the functions

V (t−tc) = exp

(
∫ τ

0

R(τ)dτ

)

U(−τ), B(t−tc) = exp

(
∫ τ

0

R(τ)dτ

)

Ψ(−τ),

(6.6)
where τ is related to t by (3.1) and R(τ) is given by (3.6).

If y > 0, then the solution (vn(t), bn(t)) associated with (6.3) is given by

vn(t) = ky−1

n V (ky
n(t− tc)), bn(t) = ky−1

n B(ky
n(t− tc)). (6.7)

This solution blows up at finite time

tc =

∫ ∞

0

exp

(

−
∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′. (6.8)

Proof: We will follow the same steps as in the proof of Theorem 5, but with
extra detail related to the presence of the magnetic field variables bn and
βn. We begin by proving that there is in fact blowup, i.e. that integral (6.8)
converges. From (6.3) and (3.3), we conclude that R(τ) must be periodic
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with period 1/a = 1. Then, from definition (6.5), a constant D can be found
satisfying the inequality

∫ τ

0

R(τ ′)dτ ′ > D + τy log h. (6.9)

This inequality, applied to the definition of tc, leads to the desired result for
every positive y

tc <

∫ ∞

0

exp (−D − τy log h) < ∞. (6.10)

From the definitions of y in (6.5) and kn = hn, as well as the periodicity
of R(τ), it is easy to verify that, for all positive τ ,

ky
n = exp

(
∫ τ+n

τ

R(τ ′)dτ ′
)

. (6.11)

Let us study time t′ correspondent to τ + n. Using definitions (3.1), (6.8)
and the change of variables τ ′ = τ̂ + n,

tc − t′ =

∫ ∞

τ+n

exp

(

−
∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′ =

∫ ∞

τ

exp

(

−
∫ τ̂+n

0

R(τ ′′)dτ ′′
)

dτ̂

=

∫ ∞

τ

exp

(

−
∫ τ̂

0

R(τ ′′)dτ ′′ −
∫ τ̂+n

τ̂

R(τ ′′)dτ ′′
)

dτ̂ .

(6.12)

Comparing with (6.11), we arrive at

tc − t′ = k−y
n (tc − t). (6.13)

Similarly, using (3.2), (6.11), (6.3) and definition (6.6), we have

vn(t
′) = k−1

n exp

(
∫ τ+n

0

R(τ ′)dτ ′
)

un(τ + n)

= ky−1

n exp

(
∫ τ

0

R(τ ′)dτ ′
)

U(−τ) = ky−1

n V (t− tc)

bn(t
′) = k−1

n exp

(
∫ τ+n

0

R(τ ′)dτ ′
)

βn(τ + n)

= ky−1

n exp

(
∫ τ

0

R(τ ′)dτ ′
)

Ψ(−τ) = ky−1

n B(t− tc).

(6.14)
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Substituting (6.13) into (6.14), we obtain the identity (6.7). Expression
(6.9) also implies that

exp

(
∫ τ

0

R(τ ′)dτ ′
)

→ ∞ as τ → ∞. (6.15)

According to (3.2) and (6.3), this yields an unbounded norm ‖v′‖∞ for t → t−c ,
i.e., the solution indeed blows up at t = tc, by Theorem 2. �

Note that the functions V (ξ) and Ψ(ξ), as well as the scaling exponent y,
do not depend directly on initial conditions. They are defined solely by the
attractor of the Poincaré map developed under the used model parameters.
In this sense, asymptotic solutions (6.7) are uniquely defined up to attractor
symmetries if there is only one attractor. As was noted in the previous
chapter, there is a multistable parameter window in the renormalized shell
model (3.3). In this case, we have different coexisting asymptotic solutions,
corresponding to the multiple attractors developed for such parameter values.
The selection of which attractor a solution follows is then subject to the initial
conditions.

Using symmetry (S.R.1), one can write the asymptotic formula (6.7) for
any wave speed a as

vn(t) = aky−1

n V (aky
n(t− tc)), bn(t) = aky−1

n B(aky
n(t− tc)). (6.16)

6.2 Periodic Blowup Solutions

Let us consider a p-periodic attractor w of the Poincaré Map, with p being
a positive integer,

Ppw = w. (6.17)

If p/a is the time period of Pp, then p/a = τp in the definition (5.8) of the
transfer operator T p takes us to a Poincaré section on which our solution
follows the same profile, only shifted p shells to the right. Through this
observation, we select the times τn which correspond to the passage between
Poincaré sections satisfying the periodic condition (6.17). Explicitly, this
subsequence of τn must satisfy the conditions,

τn = τj+Np/a, n = j+pN, for j = 0, ..., p−1 and j = N = 0, 1, ... .
(6.18)
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Then, considering (5.8),

un+p(τ + p/a) = un(τ), βn+p(τ + p/a) = βn(τ). (6.19)

General solutions of (3.3) satisfying this condition may be written as

un(τ) = aUj(n− aτ), βn(τ) = aΨj(n− aτ), (6.20)

for j = 0, ..., p − 1 satisfying n = j + pN for some integer N . We again
consider a = 1 without loss of generality due to symmetry (S.R.1).

An example of such a pulsating travelling wave may be found in Figure
5.5. It is interesting to note that, in general, shell variables present different
periods. In the previous example, un is 1-periodic while βn is 2-periodic, with
the whole attractor having the common period 2.

Theorem 7 Taking a = 1 in (6.20), let us define the scaling exponent upon
a time period of the solution as

y =
1

p log h

∫ p

0

R(τ)dτ, (6.21)

and the functions

Vj(t−tc) = exp

(
∫ τ

0

R(τ)dτ

)

Uj(−τ), Bj(t−tc) = exp

(
∫ τ

0

R(τ)dτ

)

Ψj(−τ)

(6.22)
for j = 0, ..., p−1, where τ is related to t by (3.1) and R(τ) is given by (3.6).

If y > 0, then the solution (vn(t), bn(t)) associated with (6.20) is given by

vn(t) = ky−1

n Vj(k
y
n(t−tc)), bn(t) = ky−1

n Bj(k
y
n(t−tc)), n = j+Np. (6.23)

This solution blows up at finite time

tc =

∫ ∞

0

exp

(

−
∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′. (6.24)

Proof: From (6.20) and (3.3), we conclude that R(τ) must be periodic with
period p/a = p. Then, from definition (6.21), a constant D can be found
satisfying the inequality

∫ τ

0

R(τ ′)dτ ′ > D + τy log h. (6.25)
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Applying this inequality to the definition of tc, we conclude that for every
positive y,

tc <

∫ ∞

0

exp (−D − τy log h) < ∞. (6.26)

From the definitions of y in (6.21) and kn = hn, as well as the periodicity
of R(τ), it is easy to verify that, for all positive τ ,

ky
np = exp

(
∫ τ+np

τ

R(τ ′)dτ ′
)

. (6.27)

Let us study time t′ correspondent to the passage of n renormalized time
periods, τ + np. Using definitions (3.1), (6.24) and the change of variables
τ ′ = τ̂ + np we derive

tc − t′ =

∫ ∞

τ+np

exp

(

−
∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′ =

∫ ∞

τ

exp

(

−
∫ τ̂+np

0

R(τ ′′)dτ ′′
)

dτ̂

=

∫ ∞

τ

exp

(

−
∫ τ̂

0

R(τ ′′)dτ ′′ −
∫ τ̂+np

τ̂

R(τ ′′)dτ ′′
)

dτ̂ .

(6.28)

Comparing this result with (6.27), we conclude that

tc − t′ = k−y
np (tc − t). (6.29)

Similarly, using (3.2), (6.27), (6.20) and definition (6.22)

vn(t
′) = k−1

n exp

(
∫ τ+np

0

R(τ ′)dτ ′
)

un(τ + np)

= ky−1

n exp

(
∫ τ

0

R(τ ′)dτ ′
)

Uj(−τ) = ky−1

n Vj(t− tc)

bn(t
′) = k−1

n exp

(
∫ τ+np

0

R(τ ′)dτ ′
)

βn(τ + np)

= ky−1

n exp

(
∫ τ

0

R(τ ′)dτ ′
)

Ψj(−τ) = ky−1

n Bj(t− tc),

(6.30)

where the positive integer j satisfies conditions (6.18). Substituting (6.29)
into (6.30), we obtain the identity (6.23). Expression (6.25) also implies that

exp

(
∫ τ

0

R(τ ′)dτ ′
)

→ ∞ as τ → ∞. (6.31)
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Equations (3.2) and (6.20) lead to an unbounded norm ‖v′‖∞ for t → t−c , con-
cluding that the solution blows up at t = tc, by Theorem 2. �

Resorting to symmetry (S.R.1), we can write the asymptotic formula
(6.23) for j satisfying (6.18) and wave speed a as

vn(t) = aky−1

n Vj(ak
y
n(t− tc)), bn(t) = aky−1

n Bj(ak
y
n(t− tc)). (6.32)

Figure 6.1 compared these asymptotic solutions to the direct numerical
solutions of (2.2), portraying the 8th to 15th shells. The concordance between
them is very satisfactory.
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Figure 6.1: Asymptotic solutions (6.32) for ǫ = −1.3 in dashed red lines;
solid blue lines depict numerical solutions of (2.2).

6.3 Chaotic Blowup Solutions

In Chpater 5, we observed multiple parameter windows that develop chaotic
attractors. Solutions of (3.3) which belong to these attractor do not develop
a repeating wave profile, an important aspect in our construction of asymp-
totic solutions for self-similar and periodic solutions. It is then natural that
we do not expect to develop asymptotic solutions that precisely agree to the
wave profile seen in the direct numerical solutions. However, we have ob-
served (as in Figure 5.6) that not only the solutions on the chaotic attractor
are bounded, as expected from construction, but this bound is clearly defined
by a wave envelop. As such, even though we might not be able to use our
asymptotic solutions to a direct prediction, we may consider chaotic attrac-
tors in such a way that they will adequately describe asymptotic scaling of
the blowup. These scaling properties are a central issue in other applications,
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such as the study of the spectra of developed turbulence in the inertial range
(see [17]), hence justifying our interest in the development of these asymp-
totic solutions.

It is natural, however, that we need to redefine some quantities in a sta-
tistical sense, like wave speed a and the scaling exponent y, so that they
conform to the chaos of the solutions upon which they are built. We then
write,

1

a
= lim

n→∞

τn
n

> 0, 〈A〉 = lim
n→∞

1

τn

∫ τn

0

A(τ)dτ, y =
〈A〉

a log h
, (6.33)

where 1/a accounts for the mean time step 〈τn − τn−1〉 of the Poincaré map
and 〈A〉 is the mean value of A(τ) on its attractor. We again point to the
fact that, as was the case with the fixed-point and periodic attractors, the
value of a may be made arbitrary due to the time-scaling symmetry. With
no loss of generality we choose a = 1 in our analysis, and this transformation
does not alter the value of y, because A ∼ a posses the same scaling.
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Figure 6.2: For ǫ = −0.8, shown are the times τn and integrals In =
∫ τn
0

A(τ)dτ corresponding to n iterations of the Pincaré map.
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Figure 6.2 shows times τn and integrals
∫ τn
0

A(τ)dτ corresponding to n
iterations of the Poincaré map, correspondent to the chaotic attractor found
for ǫ = −0.8. As one may observe, these values grow linearly with n, up to
small chaotic oscillations. This property is shared by our chaotic attractors
in general and not only supports definitions (6.33), but also provides us with
a way of computing the values of a and y. The red curve portraying τn has
slope 1/a, while the blue curve of In follows a slope of ay. As illustrated by
Figure 6.2, A(τ) = 〈A〉 + δA(τ), where δA(τ) oscillates near a zero mean
value. Then, written for a = 1, the inequality

∫ τ

0

R(τ ′)dτ ′ > D + τy log h (6.34)

holds and, consequently, the integral

tc =

∫ ∞

0

exp

(

−
∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′ (6.35)

converges for y > 0 in a similar way as in Theorems 6 and 7, providing the
value of the blowup time tc.

Solutions of the renormalized system (3.3) may be viewed as waves trav-
elling towards larger values of n in the logarithmic axis. The same holds for
solutions associated to chaotic attractors, except that chaotically pulsating
waves are developed. As an iteration of the Poincaré map corresponds to the
increase of wave center position by one shell number, the mean wave speed
equates to the newly defined a. From (6.33) we estimate

exp

(
∫ τn

0

A(τ)dτ

)

= e〈A〉τn exp

(
∫ τn

0

δA(τ)dτ

)

∼ e〈A〉τn ∼ e〈A〉n/a ∼ ka
n.

(6.36)
Accordingly, we use the renormalization scheme (3.2) and (6.36) to estimate
the orders of magnitude of shell solutions near blowup

vn = k−1

n exp

(
∫ τn

0

A(τ)dτ

)

un ∼ ky−1

n ,

bn = k−1

n exp

(
∫ τn

0

A(τ)dτ

)

βn ∼ ky−1

n .

(6.37)

The scaling laws (6.37) are the same as the ones based on fixed-point
and periodic attractors. In fact, the above arguments may be viewed as ex-
tensions of the construction of self-similar and periodic asymptotic solutions
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presented earlier in this chapter. Note that this extension should also be
valid for solutions belonging to quasi-periodic attractors (if such attractors
are detected). Since y > 0, as shown in Figure 6.2, the estimates (6.37)
lead to infinitely large values of knvn(t) as t → t−c , confirming that solutions
of (2.2) based on a chaotic attractors of the Poincaré map of (3.3) indeed
blowup accoring to the Theorem 2.
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Chapter 7

Conclusion
In this dissertation, we study a blowup phenomenon (a singularity forming
in finite time) for a class of simplified turbulence models (shell models) rep-
resented by an infinite system of coupled ordinary differential equations.

Having defined suitable norms, we proved a blowup criterion for a mag-
netohydrodynamic shell model of turbulence, in a spirit of the Beale-Kato-
Majda theorem. Then, we developed the renormalization scheme, which
takes blowup time to infinity and enables the use of dynamical system meth-
ods, such as Poincaré maps, attractors and bifurcation diagrams, for identifi-
cation and analysis of the blowup phenomenon. We followed with an exten-
sive numerical study of the solutions of this renormalized system, providing
self-similar, periodic and chaotically pulsating traveling waves as limiting
solutions related to the fixed-point, periodic and chaotic attractors of the
associated Poincaré map.

We made use of the symmetries of the shell model and its renormalized
equivalent, as well as the Poincaré map attractors, to construct universal
asymptotic solutions of the shell model near its blowup. We note that these
asymptotic solutions describe the blowup structure, providing the scaling
laws of the solutions near blowup.

From the attractors of the Poincaré maps defined for the solutions of the
renormalized system, we built their bifurcation diagrams. Investigating the
discontinuity of these bifurcation diagrams, we discovered a parameter inter-
val over which multiple attractors coexist. In particular, a solution may tend
to a fixed-point or a periodic attractor, depending on the initial conditions.
The later leads to concurrent types of asymptotic blowup solutions. To our
knowledge, this is the first observation of multistability of blowup in fluid
turbulence models.
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